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Artificial intelligence (AI)-based automated classification and segmentation of optical
coherence tomography (OCT) features have become increasingly popular. However, its
3-dimensional volumetric nature has made developing an algorithm that generalizes
across all patient populations and OCT devices challenging. Several recent studies have
reported high diagnostic performances of AI models; however, significantmethodolog-
ical challenges still exist in applying these models in real-world clinical practice. Lack
of large-image datasets from multiple OCT devices, nonstandardized imaging or post-
processing protocols between devices, limited graphics processing unit capabilities for
exploiting 3-dimensional features, and inconsistency in the reporting metrics are major
hurdles in enabling AI for OCT analyses. We discuss these issues and present possible
solutions.

Introduction

The rapid growth of artificial intelligence (AI)
capabilities and widespread applications continues to
expand technological frontiers. AI was first described
in 1956 as a machine capable of independent think-
ing and human-like behavior after training.1 Machine
learning, a subfield of AI, was subsequently introduced
in 1959, as an algorithm that can automatically modify
its behavior after exposure to multiple inputs.2 Recent
technological breakthroughs in computing power has
led to deep learning, a relatively new subfield of
machine learning that involves convolutional neural
networks (CNNs).3 Convolutional layers, the basis of
CNNs, use weights in filter kernels that are applied
to each pixel position in the image. Instead of ingest-
ing the whole image as a high-dimensional tensor

as in a multilayer perceptron network, CNNs learn
to extract features by learning the convolutional
filters.4 Deep learning has contributed to transforma-
tive changes in AI and computer vision, resulting in
driverless cars, language translation, and facial recog-
nition technologies.5–7 Within ophthalmology, deep
learning has been applied to automated diagnosis,
segmentation, big data analysis, and outcome predic-
tions.8 Many recent studies have used deep learning
to diagnose and segment features of diabetic retinopa-
thy,9,10 age-related macular degeneration (AMD),11,12
and glaucoma,13,14 performing comparably or superi-
orly to human experts.

One of the important AI-based applications in
ophthalmology is OCT image analysis. The advent of
OCT has revolutionized the clinical management of
many retinal diseases, including AMD,15,16 diabetic
macular edema,17–19 and retinal vein occlusions.20–22
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OCT is the most commonly obtained imaging modal-
ity in ophthalmology with 6.74 million performed in
the US Medicare population alone in 2017.23 Given
its ubiquitous availability, increasing attention has
been directed toward implementing a fully automated
disease detection system.24 Studies have shown robust
diagnostic performance in using deep learning and
OCTs to detect retinal diseases and triage the urgency
of referrals for potentially sight-threatening ocular
conditions.10,25,26

Despite these reported high diagnostic perfor-
mances, numerous methodological challenges have
resulted in difficulties of translating these algorithms
into the clinical practice. These include (1) lack
of large-image datasets from multiple OCT devices,
(2) nonstandardized imaging and/or postprocessing
protocols between devices, (3) limited graphics process-
ing unit (GPU) capabilities, and (4) inconsistency in
the reporting metrics. This review article will delve
into the above-mentioned difficulties with potential
solutions.

Limited Number of Datasets

The lack of publicly available volumetric OCT
datasets is a major barrier to deep learning–based
OCT image analysis. Having numerous input examples
is required, particularly in deep learning, to optimize
training and reduce overfitting. Many currently exist-
ing datasets are limited in the number of scans
of normal and pathologic features, are not publicly
available, or contain only images acquired from 1
OCT manufacturer. The Medical Image Comput-
ing and Computer Assisted Intervention (MICCAI)
Society has created benchmark studies to address the
limitations of small datasets. In 2017, the MICCAI
RETOUCH Challenge assembled a segmentation and
detection benchmark study using a large dataset with
112 manually segmented spectral-domain (SD)-OCT
volumes from 3 different OCT vendors.27 This dataset
was significantly larger than the dataset provided in
the previous 2015 MICCAI OPTIMA Cyst Segmen-
tation Challenge that was composed of only 30 SD-
OCT volumes from 4 different OCT vendors.28 Robust
algorithms were produced within the challenge, and
this motivated the need for algorithms that generalize
widely across diverse patient populations and differ-
ent OCT vendors. However, even larger, publicly avail-
able multivendor OCT datasets with validated manual
annotations are required to meet the need to advance
deep learning.

The large amount of data required to train a
deep learning algorithm poses a significant challenge.

Bigger datasets result in adequate training of the
model’s parameters and further improve generaliz-
ability. Ideally, these training datasets are composed
of numerous, manually annotated real data samples.
However, these datasets are costly and, therefore,
scarce. Although a few large datasets exist, training
deep learning models using small datasets is still possi-
ble through 3 strategies. The first technique exploits B-
scans adjacent to the training image within a volume.
These neighboring B-scans can be used as additional
examples in the training dataset because of their
similar, but slightly different, anatomical structures.
Similarly in computed tomography (CT) scanning,
Ben-Cohen et al.29 used unlabeled liver CT scan slices
adjacent to the labeled training image as additional
images. Second, transfer learning and/or fine-tuning
where a network is pretrained on a larger unrelated
dataset such as ImageNet can be used to start closer
to a local minimum because the lower-level filters are
already “learned.” Finally, applying data augmenta-
tions to individual scans can expand and diversify
datasets without the need to acquire new images.
Common transformations, including flipping, shear-
ing, rotation, and outward/inward scaling, are gener-
alizable because they are representative of the true
variance captured in OCT imaging. Lee et al.25 used
a 432 × 32 window to OCT images and varied its
position throughout the scan to significantly increase
their training dataset size. Morley et al.30 performed
rotation and a unique myopic warping transformation
to increase the RETOUCH dataset size by 45 times
the original amount. Kuwayama et al.31 improved their
training dataset from 1,100 B-scans to 59,400 through
horizontal flipping, rotation, and translation, produc-
ing an algorithm that correctly classified rare diseases
such as Vogt-Koyanagi-Harada disease. Similarly,
Kihara et al.32 applied data augmentation (transforma-
tion, rotation, horizontal reflection) to increase their
training dataset from 67,899 OCT B-scans to 103,053.
Gao et al.33 used a mirroring operation for data
augmentation. Devalla et al.13 compared the perfor-
mance of a deep learning model with and without
data augmentation (rotation, horizontal flipping, shift-
ing, additive white noise, multiplicative speckle noise,
elastic deformation, and occluding patches). Superior
performance was reported in the model trained using
both real and synthetic OCT data compared with the
model trained using only real images. These results
were attributed to less overfitting and improved gener-
alizability because of additional synthetic training
inputs. Although data augmentation can generate
large and diverse training datasets, it is important to
emphasize that numerous real data in the form of
validated datasets are superior to synthetic images.34
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Figure. Artificial intelligence (AI)-generated prediction optical coherence tomography (OCT) image overestimates treatment response in
treatment-naive neovascular age-related macular degeneration patients 3 months after monthly injections (loading dose) of anti–vascular
endothelial growth factor. In case 1, subretinal fluid (SRF) at baseline (A) resolves after treatment at month 3 per ground truth OCT image
(B), which the AI-generated OCT image correctly predicts (C). In case 2, SRF at baseline (D) improves but persists at postinjection month 3
(E); however, AI-generated prediction (F) incorrectly assumes complete resolution of SRF.

In addition to these techniques, newer methods
have recently demonstrated potential in expanding
datasets.

Generative adversarial networks (GANs) are a
novel, unsupervised machine learning technique that
has been used to augment datasets.35 These GANs are
composed of a generator subnetwork and a discrimina-
tor subnetwork that work in concert to yield an image
indistinguishable from real-world data. Consequently,
stunningly realistic images can be produced and used to
produce large, diverse, and high-quality datasets while
avoiding costly data acquisition, manual annotation,
and data augmentation steps.36 Even datasets that have
already experienced data transformations can further
benefit from GAN-based data augmentation.37 Within
ophthalmology, GANs have been applied to synthesize
realistic retinal OCT images.38

Similarly, we recently used aGAN to create an OCT
image that predicted changes in subretinal fluid (SRF)
after anti–vascular endothelial growth factor (VEGF)
therapy in treatment-naive neovascular AMD patients.
Based on the baseline B-scan, this GANwas trained to
generate a corresponding OCT image depicting treat-
ment response at 3 months after monthly intravit-

real anti-VEGF injections (postloading dose). A total
of 60,895 macula-centered OCT volumes at 512 ×
885 × 129 were extracted from a Topcon 3D OCT-
2000 (Topcon Inc, Tokyo, Japan). Of these, 625 OCT
volumes (6875 paired B-scans) of patients with both
baseline and postloading dose images were used to
train, validate, and test a conditional GAN.39 Images
were allocated to training, validation, and testing
OCT volumes in 60%, 20%, and 20%, respectively,
with patient-level partitioning. The GAN occasion-
ally predicted resolution of SRF correctly (Figs. A–C),
but in the majority of images (Figs. D–F), the model
overestimated SRF resolution. The GANwas found to
“over optimistically” generate the best possible OCT
image by assuming complete resolution of neovas-
cular AMD features after loading dose anti-VEGF
therapy. We concluded that the poor performance was
likely the result of overfitting and that much more
training data and direct contextual information are
needed to improve the GAN. Although GANs repre-
sent a promising field of deep learning research and can
impressively reproduce biomedical imaging features,
they require thorough clinical validation before they
can be medically applied.
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Lack of a Standardized Acquisition, Image
Registration, and Postprocessing Protocol

OCT acquires a series of cross-sectional B-scans of
the retina, and these 2-dimensional images are often
compared with ultrasound. However, 3-dimensional
(3D) OCT volumes more closely resemble magnetic
resonance images and CT scans. Nevertheless, in
contrast to scanning the entire body, OCT captures
49 to 128 B-scans over a 6 × 6 mm region of
the retina, resulting in much denser volumes.40 OCT
scans acquire significantly finer detail and higher
resolution, ranging from 1 to 10 μm, compared
with 300 μm on high-resolution CT and 1 mm on
magnetic resonance imaging.41 Despite high-resolution
scanning, image quality can vary substantially because
of noise and motion artifacts.42 Therefore, analyzing
dense, volumetric OCT scans through deep learning
presents a unique challenge.

A major challenge of AI-based OCT volumetric
analysis is the lack of a standardized acquisition proto-
col within a single or multiple OCT device. Without
standardization, images of different sizes, contrast
levels, and textures that are not generalizable to a
single AI algorithm are obtained.43,44 Raster pattern
dimensions are not consistent between devices, ranging
from 128 × 256 to 256 × 768.40 Different acquisition
times and signal-to-noise ratios among devices result
in variable image quality. Some devices achieve a high
signal-to-noise ratio through averagingmultiple images
but sacrifice B-scan volume density.27 Variations in B-
scan quality and density can affect volumetric analy-
sis because of inconsistent voxel intensities and distri-
butions. With these differences, many deep learning
algorithms are restricted to 1 OCT imaging device and
1 scan pattern, thereby limiting generalizability.

To overcome this lack of standardization, studies
have attempted to develop a single model that is
generalizable to OCT images from multiple imaging
platforms. de Sisternes et al.45 created 4 models, each
trained using voxel features extracted at 4 different
resolutions that correspond to the resolutions of each
OCT imaging device. Venhuizen et al.44 combined
predictions generated from 3 CNNs at different image
scales across entire OCT volumes to segment intrareti-
nal fluid. Lu et al.36 produced individual CNNs for
each of the 3 OCT devices separately. Each model
performed pixelwise segmentation on each B-scan
volume, followed by random forest classification of
each pixel to determine the probability of fluid. The
mean of the 10 highest probabilities was calculated to
determine the probability of fluid within the volume.
Other groups standardized image size and intensities
for all the scans across OCT devices.30,46,47 Another

study used neighboring B-scans to provide 3D contex-
tual information.48 De Fauw et al.10 proposed a 2-step
framework that involved segmentation followed by a
device vendor-independent classification second step.
The segmentation network was retrained separately on
different OCT imaging devices while the classification
network remained untouched, allowing for an easily
adaptable model to new OCT protocols. These bench-
mark studies have motivated research necessary for
multivendor volumetric analysis allowing for further
generalizability among OCT imaging devices.

The variability of the image registration and
postprocessing protocols across devices poses an
additional challenge for clinical deployment. Analyz-
ing OCT volumes using 3D convolutions would
harness additional structural data in another dimen-
sion and possibly improve segmentation accuracy
across a volume. However, some OCT devices acquire
B-scans that are widely spaced and image registration
(ie, the alignment of consecutive images in an OCT
volume) is not performed. Large interscan distances
and misaligned images can cause high variability
between adjacent scans because of eye movement (in
the x, y, and z directions), thus rendering 3D convo-
lutions meaningless.49 Although image registration
provides important benefits, its inconsistent use among
OCT manufacturers also has drawbacks. During the
process of image registration, volumes are subjected to
various postprocessing transformations, such as scaling
and rotation, in order to optimize alignment between
images. Such postprocessing procedures are incon-
sistent among OCT vendors, further contributing to
discrepancies between devices and limiting the use of
3D convolutions in OCT.50 Because of these technical
shortcomings, vast amounts of data harbored within
3D OCT volumes are underexploited.

Inconsistent Metrics

Another important consideration is determining the
appropriate metrics for classification and segmenta-
tion performance. Classification is most commonly
measured using area under the receiver operat-
ing characteristics curve (AUROC) and area under
the precision-recall curve (AUPR). AUROC and
AUPR allow direct comparison of models at differ-
ent thresholds and summarize the algorithm’s ability
to correctly predict positive classes. Of the 2, AUROC
is most commonly used and is most appropriate when
using balanced datasets. However, when class distri-
butions are skewed, AUROC is overly optimistic,
even though the model’s true performance remains
constant.51,52 AUPR,whichmeasures the true positives
among positive predictions, does not consider negative
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predictions as AUROC does. When distributions are
imbalanced (ie, more negative classifications exist than
positive classifications, or vice versa), AUROC will
become skewed, but AUPR will not. Therefore, AUPR
is the more accurate metric when using imbalanced
datasets to evaluate classification performance.53

A variety of metrics are used to measure segmen-
tation performance, such as Dice, F1 score, Jaccard
coefficient (Jaccard), and intersection over union.54,55
All of these measures are overlap indexes that
range from 0 (no overlap) to 1 (complete overlap)
when comparing the segmentation performance of an
algorithm against human experts.56 These metrics are
closely related as Dice is equivalent to F1 score and
Jaccard equates to intersection over union, but Dice
and Jaccard are mathematically distinct, given by the
equations:

Dice = 2 · True Positives
2 · True Positives + False Positives + False Negatives

= 2 · Jaccard
1 + Jaccard

Jaccard = True Positives
True Positives + False Positives + False Negatives

= Dice
2 − Dice

Therefore, Dice is always larger than Jaccard except
when there is complete overlap (true positive = 1)
or complete discordance (true positive = 0). This is
problematic because Dice scores may unfairly overin-
flate results when comparing studies that exclusively
use Jaccard. Because both metrics are positively corre-
lated with each other, reporting both Dice and Jaccard
does not offer any additional information.55 Many
of these metrics do not perform well when there are
no features of interest present in the image because
the true negatives are not in the denominator and
smoothed variants of these metrics are often applied.

Computational Restrictions

Computational constraints are another key
concern. Insufficient dynamic random access memory
(DRAM) in GPUs is pervasive in deep learning.
Inadequate computational capacities can often limit
minibatch size, depth of convolutions, or choice of
algorithms to a less robust one.57 Rhu et al.58 reported
that VGG-16 architectures, which contain 16 convolu-
tional layers and 3 fully connected layers, require 28GB
of memory using a batch size of 256. Because a single
GPU with 7 GB of DRAM can only accommodate
a batch size of 64, the VGG-16 architecture requires

multiple GPUs for a large batch size or reducing
the batch size significantly during training. Applying
these deep learning algorithms to entire OCT volumes
requires large GPU DRAM capacities.59 Maetschke et
al.60 used a 3D CNN to classify healthy and glauco-
matous eyes using raw, unsegmented OCT volumes
of the optic nerve head. However, because of limited
GPU space, the authors restricted their work to only 5
convolutional layers. Li et al.61 used a U-Net architec-
ture with 3D convolutions to perform large 4 × 496 ×
512 × 19 3D convolutions using only two 8-GB GPUs.
However, advances in GPUs are forthcoming, includ-
ing application-specific integrated circuits and the
recently released NVIDIA DGX-2, which has 256 GB
of GPU DRAM. Until then, these GPU limitations
impede the optimal use of deep learning for training
OCT algorithms.

Future Directions

Moving forward, many hurdles, such as the practi-
cality and real-world implementation of AI, must
also be overcome. Despite recent US Food and
Drug Administration approval of multiple AI-based
devices,9,62 it remains unclear how and where they
will be incorporated into real clinical settings and
how much patients will benefit from the device.63 In
addition, because of the complex nature of AI, partic-
ularly deep learning, patients and physicians alike may
not trust the clinical utility of AI due to the black-
box phenomenon.64 Elucidating the decision-making
process of deep learning algorithms is largely unknown
and is a significant hurdle. This is potentiated by
minorly modified, visually imperceptible (adversarial-
ized) images that can fool CNNs to incorrectly predict
diseases with high confidence.65 This brings security
and safety measures of such systems into questions.
Shah et al.66 demonstrated a significant decline in
performance when image-based CNNs were presented
adversarialized color fundus photographs of referable
DR. Using 50 original color fundus photographs and
50 corresponding adversarialized images, 98% of the
original images were classified correctly, but only 53%
of the adversarialized images were correctly identi-
fied. In contrast, humans correctly classified all origi-
nal and corresponding adversarialized images as refer-
able DR. Clinically, adversarial attacks could cause
a system to misdiagnose a patient as healthy when
they actually have vision-threateningDR, or vice versa.
Therefore, these systems could cause many patients to
have inappropriate overtreatment or undertreatment,
worsen outcomes, and further diminish trust.67 Much
work is needed to validate deep learning networks,
strengthen security, and improve the reliability of these
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networks. Novel techniques such as class activation
maps68 and occlusion testing69,70 could identify areas
of importance to AI systems and explain the system’s
“thought process.”

Conclusions

Many important methodological and technical
challenges exist in analyzing OCT with deep learning.
A standardized framework for OCT scans is neces-
sary to increase generalizability. Recent studies have
inspired models that standardize OCT images from
various devices. The performance of these models
can only be accurately compared when the appro-
priate metrics are used consistently. Large, manually
annotated datasets using real patient data are also
required to optimize the performance of these models
to improve generalizability and is superior to data
augmentation and adversarialized images. Although
deep learning and OCT have individually revolu-
tionized ophthalmology, optimizing the combined
technologies will be integral to accelerating progress in
the field.
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